WSL/SLF GitLab Repository

DEMObject.cc 43.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/***********************************************************************************/
/*  Copyright 2009 WSL Institute for Snow and Avalanche Research    SLF-DAVOS      */
/***********************************************************************************/
/* This file is part of MeteoIO.
    MeteoIO is free software: you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    MeteoIO is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with MeteoIO.  If not, see <http://www.gnu.org/licenses/>.
*/
18
#include <cmath>
19
#include <limits.h>
20
#include <algorithm>
21

22
#include <meteoio/dataClasses/DEMObject.h>
23
#include <meteoio/MathOptim.h>
24
#include <meteoio/meteoLaws/Meteoconst.h> //for math constants
25

26
27
28
29
30
31
32
33
34
35
36
37
/**
* @file DEMObject.cc
* @brief implementation of the DEMBoject class
*/

using namespace std;

namespace mio {

/**
* @brief Default constructor.
* Initializes all variables to 0, except lat/long which are initialized to IOUtils::nodata
38
* @param i_algorithm specify the default algorithm to use for slope computation (default=DFLT)
39
*/
40
41
DEMObject::DEMObject(const slope_type& i_algorithm)
           : Grid2DObject(), slope(), azi(), curvature(), Nx(), Ny(), Nz(),
42
43
             min_altitude(Cst::dbl_max), min_slope(Cst::dbl_max), min_curvature(Cst::dbl_max),
             max_altitude(Cst::dbl_min), max_slope(Cst::dbl_min), max_curvature(Cst::dbl_min),
44
45
46
             CalculateSlope(&DEMObject::CalculateCorripio),
             update_flag(INT_MAX), dflt_algorithm(i_algorithm),
             slope_failures(0), curvature_failures(0)
47
{
48
	setDefaultAlgorithm(i_algorithm);
49
50
51
52
}

/**
* @brief Constructor that sets variables.
Mathias Bavay's avatar
Mathias Bavay committed
53
54
55
* @param i_ncols number of colums in the grid2D
* @param i_nrows number of rows in the grid2D
* @param i_cellsize value for cellsize in grid2D
56
57
* @param i_llcorner lower lower corner point
* @param i_algorithm specify the default algorithm to use for slope computation (default=DFLT)
58
*/
Mathias Bavay's avatar
Mathias Bavay committed
59
DEMObject::DEMObject(const size_t& i_ncols, const size_t& i_nrows,
60
                     const double& i_cellsize, const Coords& i_llcorner, const slope_type& i_algorithm)
61
62
           : Grid2DObject(i_ncols, i_nrows, i_cellsize, i_llcorner),
             slope(), azi(), curvature(), Nx(), Ny(), Nz(),
63
64
             min_altitude(Cst::dbl_max), min_slope(Cst::dbl_max), min_curvature(Cst::dbl_max),
             max_altitude(Cst::dbl_min), max_slope(Cst::dbl_min), max_curvature(Cst::dbl_min),
65
66
67
             CalculateSlope(&DEMObject::CalculateCorripio),
             update_flag(INT_MAX), dflt_algorithm(i_algorithm),
             slope_failures(0), curvature_failures(0)
68
{
69
	setDefaultAlgorithm(i_algorithm);
70
71
72
73
}

/**
* @brief Constructor that sets variables.
Mathias Bavay's avatar
Mathias Bavay committed
74
* @param i_cellsize value for cellsize in grid2D
75
* @param i_llcorner lower lower corner point
Mathias Bavay's avatar
Mathias Bavay committed
76
77
* @param i_altitude grid2D of elevations
* @param i_update also update slope/normals/curvatures and their min/max? (default=true)
78
* @param i_algorithm specify the default algorithm to use for slope computation (default=DFLT)
79
*/
80
DEMObject::DEMObject(const double& i_cellsize, const Coords& i_llcorner, const Array2D<double>& i_altitude,
81
                     const bool& i_update, const slope_type& i_algorithm)
82
           : Grid2DObject(i_cellsize, i_llcorner, i_altitude),
83
             slope(), azi(), curvature(), Nx(), Ny(), Nz(),
84
85
             min_altitude(Cst::dbl_max), min_slope(Cst::dbl_max), min_curvature(Cst::dbl_max),
             max_altitude(Cst::dbl_min), max_slope(Cst::dbl_min), max_curvature(Cst::dbl_min),
86
87
88
             CalculateSlope(&DEMObject::CalculateCorripio),
             update_flag(INT_MAX), dflt_algorithm(i_algorithm),
             slope_failures(0), curvature_failures(0)
89
{
90
91
	setDefaultAlgorithm(i_algorithm);
	if(i_update==false) {
92
93
		updateAllMinMax();
	} else {
94
		update(i_algorithm);
95
96
97
98
99
	}
}

/**
* @brief Constructor that sets variables from a Grid2DObject
Mathias Bavay's avatar
Mathias Bavay committed
100
101
* @param i_dem grid contained in a Grid2DObject
* @param i_update also update slope/normals/curvatures and their min/max? (default=true)
102
* @param i_algorithm specify the default algorithm to use for slope computation (default=DFLT)
103
*/
104
DEMObject::DEMObject(const Grid2DObject& i_dem, const bool& i_update, const slope_type& i_algorithm)
105
           : Grid2DObject(i_dem.cellsize, i_dem.llcorner, i_dem.grid2D),
106
             slope(), azi(), curvature(), Nx(), Ny(), Nz(),
107
108
             min_altitude(Cst::dbl_max), min_slope(Cst::dbl_max), min_curvature(Cst::dbl_max),
             max_altitude(Cst::dbl_min), max_slope(Cst::dbl_min), max_curvature(Cst::dbl_min),
109
110
111
             CalculateSlope(&DEMObject::CalculateCorripio),
             update_flag(INT_MAX), dflt_algorithm(i_algorithm),
             slope_failures(0), curvature_failures(0)
112
{
113
114
	setDefaultAlgorithm(i_algorithm);
	if(i_update==false) {
115
116
		updateAllMinMax();
	} else {
117
		update(i_algorithm);
118
119
120
121
	}
}

/**
122
* @brief Constructor that sets variables from a subset of another DEMObject,
123
* given an origin (X,Y) (first index being 0) and a number of columns and rows
Mathias Bavay's avatar
Mathias Bavay committed
124
125
126
127
128
129
* @param i_dem dem contained in a DEMDObject
* @param i_nx X coordinate of the new origin
* @param i_ny Y coordinate of the new origin
* @param i_ncols number of columns for the subset dem
* @param i_nrows number of rows for the subset dem
* @param i_update also update slope/normals/curvatures and their min/max? (default=true)
130
* @param i_algorithm specify the default algorithm to use for slope computation (default=DFLT)
131
*/
Mathias Bavay's avatar
Mathias Bavay committed
132
133
DEMObject::DEMObject(const DEMObject& i_dem, const size_t& i_nx, const size_t& i_ny,
                     const size_t& i_ncols, const size_t& i_nrows,
134
                     const bool& i_update, const slope_type& i_algorithm)
135
136
           : Grid2DObject(i_dem, i_nx,i_ny, i_ncols,i_nrows),
             slope(), azi(), curvature(), Nx(), Ny(), Nz(),
137
138
             min_altitude(Cst::dbl_max), min_slope(Cst::dbl_max), min_curvature(Cst::dbl_max),
             max_altitude(Cst::dbl_min), max_slope(Cst::dbl_min), max_curvature(Cst::dbl_min),
139
140
141
             CalculateSlope(&DEMObject::CalculateCorripio),
             update_flag(i_dem.update_flag), dflt_algorithm(i_algorithm),
             slope_failures(0), curvature_failures(0)
142
{
143
	if ((i_ncols==0) || (i_nrows==0)) {
144
145
		throw InvalidArgumentException("requesting a subset of 0 columns or rows for DEMObject", AT);
	}
146

147
	//handling of the update properties
148
149
	setDefaultAlgorithm(i_algorithm);
	if(i_update==true) {
150
151
		//if the object is in automatic update, then we only process the arrays according to
		//the update_flag
152
		update(i_algorithm);
153
154
155
	} else {
		//if the object is NOT in automatic update, we manually copy all non-empty arrays
		//from the original set
Mathias Bavay's avatar
Mathias Bavay committed
156
		size_t nx, ny;
157

158
		i_dem.slope.size(nx, ny);
159
		if(nx>0 && ny>0) {
160
			slope.subset(i_dem.slope,i_nx,i_ny, i_ncols,i_nrows);
161
		}
162
		i_dem.azi.size(nx, ny);
163
		if(nx>0 && ny>0) {
164
			azi.subset(i_dem.azi,i_nx,i_ny, i_ncols,i_nrows);
165
		}
166
		i_dem.curvature.size(nx, ny);
167
		if(nx>0 && ny>0) {
168
			curvature.subset(i_dem.curvature,i_nx,i_ny, i_ncols,i_nrows);
169
		}
170
		i_dem.Nx.size(nx, ny);
171
		if(nx>0 && ny>0) {
172
			Nx.subset(i_dem.Nx,i_nx,i_ny, i_ncols,i_nrows);
173
		}
174
		i_dem.Ny.size(nx, ny);
175
		if(nx>0 && ny>0) {
176
			Ny.subset(i_dem.Ny,i_nx,i_ny, i_ncols,i_nrows);
177
		}
178
		i_dem.Nz.size(nx, ny);
179
		if(nx>0 && ny>0) {
180
			Nz.subset(i_dem.Nz,i_nx,i_ny, i_ncols,i_nrows);
181
182
183
		}

		updateAllMinMax();
184
185
186
	}
}

187
188
189
190
191
192
193
194
195
196
197
198
199
200
/**
* @brief Set the properties that will be calculated by the object when updating
* The following properties can be turned on/off: slope/azimuth and/or normals, and/or curvatures.
* Flags are combined using the binary "|" operator.
* @param in_update_flag parameters to update
*/
void DEMObject::setUpdatePpt(const update_type& in_update_flag) {
	update_flag = in_update_flag;
}

/**
* @brief Get the properties that will be calculated by the object when updating
* @return combination of flags set with the binary "|" operator
*/
201
int DEMObject::getUpdatePpt() const {
202
203
204
	return update_flag;
}

205
206
/**
* @brief Force the computation of the local slope, azimuth, normal vector and curvature.
207
* It has to be called manually since it can require some time to compute. Without this call,
208
* the above mentionned parameters are NOT up to date.
Mathias Bavay's avatar
Mathias Bavay committed
209
* @param algorithm algorithm to use for computing slope, azimuth and normals
210
211
*/
void DEMObject::update(const slope_type& algorithm) {
212
//This method recomputes the attributes that are not read as parameters
213
214
215
//(such as slope, azimuth, normal vector)

	// Creating tables
216
	if(update_flag&SLOPE) {
217
218
		slope.resize(getNx(), getNy());
		azi.resize(getNx(), getNy());
219
220
	}
	if(update_flag&CURVATURE) {
221
		curvature.resize(getNx(), getNy());
222
223
	}
	if(update_flag&NORMAL) {
224
225
226
		Nx.resize(getNx(), getNy());
		Ny.resize(getNx(), getNy());
		Nz.resize(getNx(), getNy());
227
	}
228
229
230
231
232
233
234

	CalculateAziSlopeCurve(algorithm);
	updateAllMinMax();
}

/**
* @brief Force the computation of the local slope, azimuth, normal vector and curvature.
235
* It has to be called manually since it can require some time to compute. Without this call,
236
* the above mentionned parameters are NOT up to date.
Mathias Bavay's avatar
Mathias Bavay committed
237
* @param algorithm algorithm to use for computing slope, azimuth and normals
238
239
240
241
242
243
* it is either:
* - HICK that uses the maximum downhill slope method (Dunn and Hickey, 1998)
* - FLEMING uses a 4 neighbors algorithm (Fleming and Hoffer, 1979)
* - CORRIPIO that uses the surface normal vector using the two triangle method given in Corripio (2002)
* and the eight-neighbor algorithm of Horn (1981) for border cells.
* - D8 uses CORRIPIO but discretizes the resulting azimuth to 8 cardinal directions and the slope is rounded to the nearest degree. Curvature and normals are left untouched.
244
*
245
246
247
* The azimuth is always computed using the Hodgson (1998) algorithm.
*/
void DEMObject::update(const std::string& algorithm) {
248
//This method recomputes the attributes that are not read as parameters
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//(such as slope, azimuth, normal vector)
	slope_type type;

	if(algorithm.compare("HICK")==0) {
		type=HICK;
	} else if(algorithm.compare("FLEMING")==0) {
		type=FLEM;
	} else if(algorithm.compare("HORN")==0) {
		type=HORN;
	} else if(algorithm.compare("CORRIPIO")==0) {
		type=CORR;
	} else if(algorithm.compare("D8")==0) {
		type=D8;
	} else if(algorithm.compare("DEFAULT")==0) {
		type=DFLT;
	} else {
		throw InvalidArgumentException("Chosen slope algorithm " + algorithm + " not available", AT);
	}
267

268
269
270
271
272
	update(type);
}

/**
* @brief Sets the default slope calculation algorithm
273
* @param i_algorithm specify the default algorithm to use for slope computation
274
*/
275
void DEMObject::setDefaultAlgorithm(const slope_type& i_algorithm) {
276
//This method MUST be called by each constructor!
277
	if(i_algorithm==DFLT) {
278
279
		dflt_algorithm = CORR;
	} else {
280
		dflt_algorithm = i_algorithm;
281
282
283
	}
}

284
285
286
287
288
289
290
/**
* @brief Get the default slope calculation algorithm
* @return default algorithm to use for slope computation
*/
int DEMObject::getDefaultAlgorithm() const {
	return dflt_algorithm;
}
291
292
/**
* @brief Recomputes the min/max of altitude, slope and curvature
293
* It return +/- std::numeric_limits\<double\>\:\:max() for a given parameter if its grid was empty/undefined
294
295
296
*/
void DEMObject::updateAllMinMax() {
//updates the min/max parameters of all 2D tables
297
	if(update_flag&SLOPE) {
298
299
		min_slope = slope.getMin();
		max_slope = slope.getMax();
300
301
	}
	if(update_flag&CURVATURE) {
302
303
		min_curvature = curvature.getMin();
		max_curvature = curvature.getMax();
304
305
	}

306
307
	min_altitude = grid2D.getMin();
	max_altitude = grid2D.getMax();
308
309
310
311
312
313
314
315
316
}

/**
* @brief Prints the list of points that have an elevation different than nodata but no slope or curvature
* Such points can happen if they are surrounded by too many points whose elevation is nodata
* If no such points exist, it prints nothing.
*/
void DEMObject::printFailures() {
	bool header=true;
317
318
	const size_t ncols = getNx();
	const size_t nrows = getNy();
319

320
	if(update_flag&SLOPE) {
Mathias Bavay's avatar
Mathias Bavay committed
321
322
		for ( size_t j = 0; j < nrows; j++ ) {
			for ( size_t i = 0; i < ncols; i++ ) {
323
324
				if((slope(i,j)==IOUtils::nodata) && (grid2D(i,j)!=IOUtils::nodata)) {
					if(header==true) {
325
326
						cerr << "[i] DEM slope could not be computed at the following points \n";
						cerr << "[i]\tGrid Point\tElevation\tSlope\n";
327
328
						header=false;
					}
329
					cerr << "[i]\t(" << i << "," << j << ")" << "\t\t" << grid2D(i,j) << "\t\t" << slope(i,j) << "\n";
330
331
332
333
334
335
				}
			}
		}
	}

	if(update_flag&CURVATURE) {
Mathias Bavay's avatar
Mathias Bavay committed
336
337
		for ( size_t j = 0; j < nrows; j++ ) {
			for ( size_t i = 0; i < ncols; i++ ) {
338
339
				if((curvature(i,j)==IOUtils::nodata) && (grid2D(i,j)!=IOUtils::nodata)) {
					if(header==true) {
340
341
						cerr << "[i] DEM curvature could not be computed at the following points \n";
						cerr << "[i]\tGrid Point\tElevation\tCurvature\n";
342
343
						header=false;
					}
344
					cerr << "[i]\t(" << i << "," << j << ")" << "\t\t" << grid2D(i,j) << "\t\t" <<  curvature(i,j) << "\n";
345
346
347
348
349
				}
			}
		}
	}
	if(header==false) {
350
		cerr << std::endl;
351
352
353
354
355
356
357
358
359
360
361
362
363
364
	}
}

/**
* @brief Clean up the DEM Object
* When computing the slope and curvature, it is possible to get points where the elevation is known
* but where no slope/azimuth/normals/curvature could be computed. This method sets the elevation to nodata for such points,
* so that latter use of the DEM would be simpler (simply test the elevation in order to know if the point can be used
* and it guarantees that all other informations are available).If the slope/azimuth/normals/curvature tables were manually updated, this method will NOT perform any work (it requires the count of slopes/curvature failures to be greater than zero)
*
* IMPORTANT: calling this method DOES change the table of elevations!
*/
void DEMObject::sanitize() {
	if(slope_failures>0 || curvature_failures>0) {
365
366
367
		const size_t ncols = getNx();
		const size_t nrows = getNy();

Mathias Bavay's avatar
Mathias Bavay committed
368
369
		for ( size_t j = 0; j < nrows; j++ ) {
			for ( size_t i = 0; i < ncols; i++ ) {
370
371
372
373
374
375
376
377
378
				if(update_flag&SLOPE) {
					if((slope(i,j)==IOUtils::nodata) && (grid2D(i,j)!=IOUtils::nodata)) {
						grid2D(i,j) = IOUtils::nodata;
					}
				}
				if(update_flag&CURVATURE) {
					if((curvature(i,j)==IOUtils::nodata) && (grid2D(i,j)!=IOUtils::nodata)) {
						grid2D(i,j) = IOUtils::nodata;
					}
379
380
381
382
383
384
				}
			}
		}
	}
}

385
386
387
388
389
/**
* @brief Computes the hillshade for the dem
* This "fake illumination" method is used to better show the relief on maps.
* @param elev elevation (in degrees) of the source of light
* @param azimuth azimuth (in degrees) of the source of light
390
* @return hillshade grid that containing the illumination
391
392
*
*/
393
Grid2DObject DEMObject::getHillshade(const double& elev, const double& azimuth) const
394
{
395
	if(slope.empty() || azi.empty())
396
397
398
399
		throw InvalidArgumentException("Hillshade computation requires slope and azimuth!", AT);

	const double zenith_rad = (90.-elev)*Cst::to_rad;
	const double azimuth_rad = azimuth*Cst::to_rad;
400
401
402
403
	const size_t ncols = getNx();
	const size_t nrows = getNy();

	Grid2DObject hillshade(ncols, nrows, cellsize, llcorner);
404
405
406
407
408
409
410
411
412
413
414
415
416
417

	for ( size_t j = 0; j < nrows; j++ ) {
		for ( size_t i = 0; i < ncols; i++ ) {
			const double alt = grid2D(i,j);
			const double sl = slope(i,j);
			const double az = azi(i,j);
			if(alt!=IOUtils::nodata && sl!=IOUtils::nodata && az!=IOUtils::nodata) {
				const double sl_rad = sl*Cst::to_rad;
				const double tmp = cos(zenith_rad) * cos(sl_rad) + sin(zenith_rad) * sin(sl_rad) * cos(azimuth_rad-az*Cst::to_rad);
				hillshade(i,j) = (tmp>=0.)? tmp : 0.;
			} else
				hillshade(i,j) = IOUtils::nodata;
		}
	}
418
419

	return hillshade;
420
421
}

422
423
424
425
426
427
428
429
430
431
432
/**
* @brief Computes the horizontal distance between two points in a metric grid
* @param xcoord1 east coordinate of the first point
* @param ycoord1 north coordinate of the first point
* @param xcoord2 east coordinate of the second point
* @param ycoord2 north coordinate of the second point
* @return horizontal distance in meters
*
*/
double DEMObject::horizontalDistance(const double& xcoord1, const double& ycoord1, const double& xcoord2, const double& ycoord2)
{
433
	return sqrt( Optim::pow2(xcoord2-xcoord1) + Optim::pow2(ycoord2-ycoord1) );
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
}

/**
* @brief Computes the horizontal distance between two points in a metric grid
* @param point1 first point (ie: origin)
* @param point2 second point (ie: destination)
* @return horizontal distance in meters
*
*/
double DEMObject::horizontalDistance(Coords point1, const Coords& point2)
{
	if(point1.isSameProj(point2)==false) {
		point1.copyProj(point2);
	}
	return horizontalDistance(point1.getEasting(), point1.getNorthing(),
449
	                          point2.getEasting(), point2.getNorthing() );
450
451
452
453
454
455
456
457
458
459
460
461
462
}


/**
* @brief Returns the distance *following the terrain* between two coordinates
* @param point1 first point (ie: origin)
* @param point2 second point (ie: destination)
* @return distance following the terrain in meters
*
*/
double DEMObject::terrainDistance(Coords point1, const Coords& point2) {
	std::vector<GRID_POINT_2D> vec_points;
	double distance=0.;
Mathias Bavay's avatar
Mathias Bavay committed
463
	size_t last_point=0; //point 0 is always the starting point
464
465
466
467
468
469
470

	//Checking that both points use the same projection is done in getPointsBetween()
	getPointsBetween(point1, point2, vec_points);
	if(vec_points.size()<=1) {
		return 0.;
	}

Mathias Bavay's avatar
Mathias Bavay committed
471
472
473
474
475
	for(size_t ii=1; ii<vec_points.size(); ii++) {
		const size_t ix1=vec_points[last_point].ix;
		const size_t iy1=vec_points[last_point].iy;
		const size_t ix2=vec_points[ii].ix;
		const size_t iy2=vec_points[ii].iy;
476
477
478
479
480
481

		if(grid2D(ix2,iy2)!=IOUtils::nodata) {
			if(grid2D(ix1,iy1)!=IOUtils::nodata) {
				//distance += sqrt( pow2((ix2-ix1)*cellsize) + pow2((iy2-iy1)*cellsize) + pow2(grid2D(ix2,iy2)-grid2D(ix1,iy1)) );
				const double z1=grid2D(ix1,iy1);
				const double z2=grid2D(ix2,iy2);
482
483
484
				const double tmpx=Optim::pow2((double)(ix2-ix1)*cellsize);
				const double tmpy=Optim::pow2((double)(iy2-iy1)*cellsize);
				const double tmpz=Optim::pow2(z2-z1);
485
486
487
488
489
490
491
492
493
494
				distance += sqrt( tmpx + tmpy + tmpz );
			}
			last_point = ii;
		}
	}

	return distance;
}

/**
495
496
497
498
499
500
* @brief Returns a list of grid points that are on the straight line between two coordinates.
* This implements Bresenham's algorithm (see https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm)
* @param ix1 origin's abscissa
* @param iy1 origin's ordinate
* @param ix2 destination's abscissa
* @param iy2 destination's ordinate
501
502
503
* @param vec_points vector of points that are in between
*
*/
504
505
506
void DEMObject::getPointsBetween(const int& ix1, const int& iy1, const int& ix2, const int& iy2, std::vector<GRID_POINT_2D>& vec_points)
{
	vec_points.clear();
507
508
	if(ix1==ix2) {
		//special case of vertical alignement
509
		for(int iy=min(iy1,iy2); iy<=max(iy1,iy2); iy++) {
510
511
512
513
514
515
516
517
518
519
520
521
522
523
			GRID_POINT_2D pts;
			pts.ix = ix1;
			pts.iy = iy;
			vec_points.push_back(pts);
		}
	} else {
		//normal case
		//equation of the line between the two points
		const double a = ((double)(iy2-iy1)) / ((double)(ix2-ix1));
		const double b = (double)iy1 - a * (double)ix1;

		for(int ix=ix1; ix<=ix2; ix++) {
			//extension of the line segment (ix, ix+1) along the Y axis
			int y1 = (int)floor( a*(double)ix+b );
524
			//const int y2 = min( (int)floor( a*((double)ix+1)+b ) , iy2);
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
			int y2 = (int)floor( a*((double)ix+1)+b );
			if(ix==ix2 && y1==iy2) {
				//we don't want to overshoot when reaching the target cell
				y2 = y1;
			}

			if(y1>y2) {
				//we want y1<y2, so we swap the two coordinates
				const int ytemp=y1;
				y1=y2; y2=ytemp;
			}

			for(int iy=y1; iy<=y2; iy++) {
				GRID_POINT_2D pts;
				pts.ix = ix;
				pts.iy = iy;
				//make sure we only return points within the dem
542
				if(ix>0 && ix<(signed)getNx() && iy>0 && iy<(signed)getNy()) {
543
544
545
546
547
548
549
					vec_points.push_back(pts);
				}
			}
		}
	}
}

550
551
/**
* @brief Returns a list of grid points that are on the straight line between two coordinates
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
* @param point1 first point (ie: origin)
* @param point2 second point (ie: destination)
* @param vec_points vector of points that are in between
*
*/
void DEMObject::getPointsBetween(Coords point1, Coords point2, std::vector<GRID_POINT_2D>& vec_points) {

	if(point1.isSameProj(point2)==false) {
		point1.copyProj(point2);
	}

	if(point1.getEasting() > point2.getEasting()) {
		//we want xcoord1<xcoord2, so we swap the two points
		const Coords tmp = point1;
		point1 = point2;
		point2 = tmp;
	}

	//extension of the line segment (pts1, pts2) along the X axis
	const int ix1 = (int)floor( (point1.getEasting() - llcorner.getEasting())/cellsize );
	const int iy1 = (int)floor( (point1.getNorthing() - llcorner.getNorthing())/cellsize );
	const int ix2 = (int)floor( (point2.getEasting() - llcorner.getEasting())/cellsize );
	const int iy2 = (int)floor( (point2.getNorthing() - llcorner.getNorthing())/cellsize );

	getPointsBetween(ix1, iy1, ix2, iy2, vec_points);
}

/**
* @brief Returns a list of grid points that are on the straight line between two coordinates
581
582
583
584
585
* @param point the origin point
* @param bearing direction given by a compass bearing
* @param vec_points vector of points that are between point and the edge of the dem following direction given by bearing
*
*/
586
587
void DEMObject::getPointsBetween(const Coords& point, const double& bearing, std::vector<GRID_POINT_2D>& vec_points) {
	//equation of the line between for a point (x0,y0) and a bearing
588
589
	const double x0 = (point.getEasting() - llcorner.getEasting())/cellsize;
	const double y0 = (point.getNorthing() - llcorner.getNorthing())/cellsize;
590
591
	const double bear=fmod(bearing+360., 360.); //this should not be needed, but as safety...
	const double a = tan( IOUtils::bearing_to_angle(bear) ); //to get trigonometric angle
592
	const double b = y0 - a * x0;
593

594
595
596
	//looking which point is on the limit of the grid and not outside
	Coords pointlim;
	pointlim.copyProj(llcorner); //we use the same projection parameters as the DEM
597
598
599
600

	//define the boundaries according to the quadrant we are in
	double xlim, ylim;
	if(bear>=0. && bear<90.) {
601
602
		xlim = (double)(getNx()-1);
		ylim = (double)(getNy()-1);
603
	} else if (bear>=90. && bear<180.) {
604
		xlim = (double)(getNx()-1);
605
606
607
608
609
610
		ylim = 0.;
	} else if (bear>=180. && bear<270.) {
		xlim = 0.;
		ylim = 0.;
	} else {
		xlim = 0.;
611
		ylim = (double)(getNy()-1);
612
613
614
615
616
617
618
619
620
	}

	//calculate the two possible intersections between the bearing line and the boundaries
	const double y2 = a * xlim + b;
	const double x2 = (ylim - b) / (a + 1e-12);

	//Find out which point is the first intersect and take it as our destination point
	if(bear>=90. && bear<270.) {
		if (y2 >= ylim)
621
622
623
        		pointlim.setXY((xlim*cellsize)+llcorner.getEasting(),(y2*cellsize)+llcorner.getNorthing() , IOUtils::nodata);
		else
        		pointlim.setXY((x2*cellsize)+llcorner.getEasting(),(ylim*cellsize)+llcorner.getNorthing() , IOUtils::nodata);
624
	} else {
625
626
627
628
629
		if (y2 <= ylim)
        		pointlim.setXY((xlim*cellsize)+llcorner.getEasting(),(y2*cellsize)+llcorner.getNorthing() , IOUtils::nodata);
		else
        		pointlim.setXY((x2*cellsize)+llcorner.getEasting(),(ylim*cellsize)+llcorner.getNorthing() , IOUtils::nodata);
	}
630

631
	if(gridify(pointlim)==false) {
632
		std::ostringstream tmp;
633
634
		tmp << "[E] Wrong destination point calculated for bearing " << bearing;
		throw InvalidArgumentException(tmp.str(), AT);
635
636
	}

637
638
	getPointsBetween(point, pointlim, vec_points);
	//HACK BUG : for bearing=160 -> both start and end points are missing from the list!!
639
640
641
642
643
644
645
646
647
648
649
}

/**
* @brief Returns the horizon from a given point looking toward a given bearing
* @param point the origin point
* @param bearing direction given by a compass bearing
* @return angle above the horizontal (in deg)
*
*/
double DEMObject::getHorizon(const Coords& point, const double& bearing) {

650
	std::vector<Grid2DObject::GRID_POINT_2D> vec_points;
651
652
	getPointsBetween(point, bearing, vec_points);

653
654
655
656
	//Starting point
	const int ix0 = (int)point.getGridI();
	const int iy0 = (int)point.getGridJ();
	const double height0 = grid2D(ix0,iy0);
657

658
	//going through every point and looking for the highest tangent (which is also the highest angle)
659
	double max_tangent = 0.;
Mathias Bavay's avatar
Mathias Bavay committed
660
	for (size_t ii=0; ii < vec_points.size(); ii++) {
661
662
663
664
665
666
667
668
669
		const int ix = (int)vec_points[ii].ix;
		const int iy = (int)vec_points[ii].iy;
		const double delta_height = grid2D(ix, iy) - height0;
		const double x_distance = (double)(ix - ix0) * cellsize;
		const double y_distance = (double)(iy - iy0) * cellsize;
		const double distance = sqrt(x_distance * x_distance + y_distance * y_distance);
		const double tangent = (delta_height / distance);

		if(tangent > max_tangent) max_tangent = tangent;
670
671
	}

672
	//returning the angle matching the highest tangent
673
	return ( atan(max_tangent)*Cst::to_deg );
674
675
676
677
678
679
680
681
682
}

/**
* @brief Returns the horizon from a given point looking 360 degrees around by increments
* @param point the origin point
* @param increment to the bearing between two angles
* @param horizon vector of heights above a given angle
*
*/
683
684
685
686
687
688
void DEMObject::getHorizon(const Coords& point, const double& increment, std::vector<double>& horizon)
{
	for(double bearing=0.0; bearing <360.; bearing += increment) {
		const double alpha = getHorizon(point, bearing * Cst::PI/180.);
		horizon.push_back(alpha);
	}
689
690
}

691
692
693
void DEMObject::CalculateAziSlopeCurve(slope_type algorithm) {
//This computes the slope and the aspect at a given cell as well as the x and y components of the normal vector
	double A[4][4]; //table to store neigbouring heights: 3x3 matrix but we want to start at [1][1]
694
	                //we use matrix notation: A[y][x]
695
696
697
698
699
700
	if(algorithm==DFLT) {
		algorithm = dflt_algorithm;
	}

	slope_failures = curvature_failures = 0;
	if(algorithm==HICK) {
701
		CalculateSlope = &DEMObject::CalculateHick;
702
	} else if(algorithm==HORN) {
703
		CalculateSlope = &DEMObject::CalculateHorn;
704
	} else if(algorithm==CORR) {
705
		CalculateSlope = &DEMObject::CalculateCorripio;
706
	} else if(algorithm==FLEM) {
707
708
709
710
711
712
713
714
		CalculateSlope = &DEMObject::CalculateFleming;
	} else if(algorithm==D8) {
		CalculateSlope = &DEMObject::CalculateHick;
	} else {
		throw InvalidArgumentException("Chosen slope algorithm not available", AT);
	}

	//Now, calculate the parameters using the previously defined function pointer
715
716
	for ( size_t j = 0; j < getNy(); j++ ) {
		for ( size_t i = 0; i < getNx(); i++ ) {
717
718
			if( grid2D(i,j) == IOUtils::nodata ) {
				if(update_flag&SLOPE) {
719
					slope(i,j) = azi(i,j) = IOUtils::nodata;
720
721
				}
				if(update_flag&CURVATURE) {
722
					curvature(i,j) = IOUtils::nodata;
723
724
				}
				if(update_flag&NORMAL) {
725
					Nx(i,j) = Ny(i,j) = Nz(i,j) = IOUtils::nodata;
726
727
728
				}
			} else {
				getNeighbours(i, j, A);
729
				double new_slope, new_Nx, new_Ny, new_Nz;
730
				(this->*CalculateSlope)(A, new_slope, new_Nx, new_Ny, new_Nz);
731
732
				const double new_azi = CalculateAspect(new_Nx, new_Ny, new_Nz, new_slope);
				const double new_curvature = getCurvature(A);
733
				if(update_flag&SLOPE) {
734
735
					slope(i,j) = new_slope;
					azi(i,j) = new_azi;
736
737
				}
				if(update_flag&CURVATURE) {
738
					curvature(i,j) = new_curvature;
739
740
				}
				if(update_flag&NORMAL) {
741
742
743
					Nx(i,j) = new_Nx;
					Ny(i,j) = new_Ny;
					Nz(i,j) = new_Nz;
744
745
746
				}
			}
		}
747
748
749
	}

	if((update_flag&SLOPE) && (algorithm==D8)) { //extra processing required: discretization
750
751
		for ( size_t j = 0; j < getNy(); j++ ) {
			for ( size_t i = 0; i < getNx(); i++ ) {
752
753
754
755
756
757
758
759
760
761
762
763
					//TODO: process flats by an extra algorithm
					if(azi(i,j)!=IOUtils::nodata)
						azi(i,j) = fmod(floor( (azi(i,j)+22.5)/45. )*45., 360.);
					if(slope(i,j)!=IOUtils::nodata)
						slope(i,j) = floor( slope(i,j)+0.5 );
			}
		}
	}

	//Inform the user is some points have unexpectidly not been computed
	//(ie: there was an altitude but some parameters could not be computed)
	if(slope_failures>0 || curvature_failures>0) {
764
		cerr << "[W] DEMObject: " << slope_failures << " point(s) have an elevation but no slope, " << curvature_failures << " point(s) have an elevation but no curvature." << std::endl;
765
766
767
768
	}

} // end of CalculateAziSlope

769
double DEMObject::CalculateAspect(const double& o_Nx, const double& o_Ny, const double& o_Nz, const double& o_slope, const double no_slope) {
770
771
772
773
//Calculates the aspect at a given point knowing its normal vector and slope
//(direction of the normal pointing out of the surface, clockwise from north)
//This azimuth calculation is similar to Hodgson (1998)
//local_nodata is the value that we want to give to the aspect of points that don't have a slope
774
//The value is a bearing (ie: deg, clockwise, 0=North)
775

776
	if(o_Nx==IOUtils::nodata || o_Ny==IOUtils::nodata || o_Nz==IOUtils::nodata || o_slope==IOUtils::nodata) {
777
778
779
		return IOUtils::nodata;
	}

780
781
782
	if ( o_slope > 0. ) { //there is some slope
		if ( o_Nx == 0. ) { //no E-W slope, so it is purely N-S
			if ( o_Ny < 0. ) {
783
				return(180.); // south facing
784
			} else {
785
				return (0.); // north facing
786
787
			}
		} else { //there is a E-W slope
788
789
			if ( o_Nx > 0. ) {
				return (90. - atan(o_Ny/o_Nx)*Cst::to_deg);
790
			} else {
791
				return (270. - atan(o_Ny/o_Nx)*Cst::to_deg);
792
793
794
795
796
797
798
799
			}
		}
	} else { // if slope = 0
		return (no_slope);          // undefined or plain surface
	}
}


800
void DEMObject::CalculateHick(double A[4][4], double& o_slope, double& o_Nx, double& o_Ny, double& o_Nz) {
801
802
803
804
805
806
//This calculates the surface normal vector using the steepest slope method (Dunn and Hickey, 1998):
//the steepest slope found in the eight cells surrounding (i,j) is given to be the slope in (i,j)
//Beware, sudden steps could happen
	const double smax = steepestGradient(A); //steepest local gradient

	if(smax==IOUtils::nodata) {
807
808
809
810
		o_slope = IOUtils::nodata;
		o_Nx = IOUtils::nodata;
		o_Ny = IOUtils::nodata;
		o_Nz = IOUtils::nodata;
811
812
		slope_failures++;
	} else {
813
		o_slope = atan(smax)*Cst::to_deg;
814
815
816
817
818
819

		//Nx and Ny: x and y components of the normal pointing OUT of the surface
		if ( smax > 0. ) { //ie: there is some slope
			double dx_sum, dy_sum;
			surfaceGradient(dx_sum, dy_sum, A);
			if(dx_sum==IOUtils::nodata || dy_sum==IOUtils::nodata) {
820
821
822
				o_Nx = IOUtils::nodata;
				o_Ny = IOUtils::nodata;
				o_Nz = IOUtils::nodata;
823
824
				slope_failures++;
			} else {
825
826
827
				o_Nx = -1.0 * dx_sum / (2. * cellsize);	//Nx=-dz/dx
				o_Ny = -1.0 * dy_sum / (2. * cellsize);	//Ny=-dz/dy
				o_Nz = 1.;				//Nz=1 (normalized by definition of Nx and Ny)
828
829
			}
		} else { //ie: there is no slope
830
831
832
			o_Nx = 0.;
			o_Ny = 0.;
			o_Nz = 1.;
833
834
835
836
		}
	}
}

837
void DEMObject::CalculateFleming(double A[4][4], double& o_slope, double& o_Nx, double& o_Ny, double& o_Nz) {
838
839
//This calculates the surface normal vector using method by Fleming and Hoffer (1979)
	if(A[2][1]!=IOUtils::nodata && A[2][3]!=IOUtils::nodata && A[3][2]!=IOUtils::nodata && A[1][2]!=IOUtils::nodata) {
840
841
842
843
		o_Nx = 0.5 * (A[2][1] - A[2][3]) / cellsize;
		o_Ny = 0.5 * (A[3][2] - A[1][2]) / cellsize;
		o_Nz = 1.;
		o_slope = atan( sqrt(o_Nx*o_Nx+o_Ny*o_Ny) ) * Cst::to_deg;
844
	} else {
845
		CalculateHick(A, o_slope, o_Nx, o_Ny, o_Nz);
846
847
848
	}
}

849
void DEMObject::CalculateHorn(double A[4][4], double& o_slope, double& o_Nx, double& o_Ny, double& o_Nz) {
850
851
852
853
854
//This calculates the slope using the two eight neighbors method given in Horn (1981)
//This is also the algorithm used by ArcGIS
	if ( A[1][1]!=IOUtils::nodata && A[1][2]!=IOUtils::nodata && A[1][3]!=IOUtils::nodata &&
	     A[2][1]!=IOUtils::nodata && A[2][2]!=IOUtils::nodata && A[2][3]!=IOUtils::nodata &&
	     A[3][1]!=IOUtils::nodata && A[3][2]!=IOUtils::nodata && A[3][3]!=IOUtils::nodata) {
855
856
857
		o_Nx = ((A[3][3]+2.*A[2][3]+A[1][3]) - (A[3][1]+2.*A[2][1]+A[1][1])) / (8.*cellsize);
		o_Ny = ((A[1][3]+2.*A[1][2]+A[1][1]) - (A[3][3]+2.*A[3][2]+A[3][1])) / (8.*cellsize);
		o_Nz = 1.;
858
859
860

		//There is no difference between slope = acos(n_z/|n|) and slope = atan(sqrt(sx*sx+sy*sy))
		//slope = acos( (Nz / sqrt( Nx*Nx + Ny*Ny + Nz*Nz )) );
861
		o_slope = atan( sqrt(o_Nx*o_Nx+o_Ny*o_Ny) ) * Cst::to_deg;
862
863
	} else {
		//steepest slope method (Dunn and Hickey, 1998)
864
		CalculateHick(A, o_slope, o_Nx, o_Ny, o_Nz);
865
866
867
	}
}

868
void DEMObject::CalculateCorripio(double A[4][4], double& o_slope, double& o_Nx, double& o_Ny, double& o_Nz) {
869
870
871
872
873
//This calculates the surface normal vector using the two triangle method given in Corripio (2003) but cell centered instead of node centered (ie using a 3x3 grid instead of 2x2)
	if ( A[1][1]!=IOUtils::nodata && A[1][3]!=IOUtils::nodata && A[3][1]!=IOUtils::nodata && A[3][3]!=IOUtils::nodata) {
		// See Corripio (2003), knowing that here we normalize the result (divided by Nz=cellsize*cellsize) and that we are cell centered instead of node centered
		o_Nx = (A[3][1] + A[1][1] - A[3][3] - A[1][3]) / (2.*2.*cellsize);
		o_Ny = (A[3][1] - A[1][1] + A[3][3] - A[1][3]) / (2.*2.*cellsize);
874
		o_Nz = 1.;
875
876
		//There is no difference between slope = acos(n_z/|n|) and slope = atan(sqrt(sx*sx+sy*sy))
		//slope = acos( (Nz / sqrt( Nx*Nx + Ny*Ny + Nz*Nz )) );
877
		o_slope = atan( sqrt(o_Nx*o_Nx+o_Ny*o_Ny) ) * Cst::to_deg;
878
879
	} else {
		//steepest slope method (Dunn and Hickey, 1998)
880
		CalculateHick(A, o_slope, o_Nx, o_Ny, o_Nz);
881
882
883
884
885
886
887
888
889
890
891
892
893
	}
}

double DEMObject::getCurvature(double A[4][4]) {
//This methode computes the curvature of a specific cell
	if(A[2][2]!=IOUtils::nodata) {
		const double Zwe   = avgHeight(A[2][1], A[2][2], A[2][3]);
		const double Zsn   = avgHeight(A[1][2], A[2][2], A[3][2]);
		const double Zswne = avgHeight(A[3][1], A[2][2], A[1][3]);
		const double Znwse = avgHeight(A[1][1], A[2][2], A[3][3]);

		const double sqrt2 = sqrt(2.);
		double sum=0.;
Mathias Bavay's avatar
Mathias Bavay committed
894
		size_t count=0;
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

		if(Zwe!=IOUtils::nodata) {
			sum += 0.5*(A[2][2]-Zwe);
			count++;
		}
		if(Zsn!=IOUtils::nodata) {
			sum += 0.5*(A[2][2]-Zsn);
			count++;
		}
		if(Zswne!=IOUtils::nodata) {
			sum += 0.5*(A[2][2]-Zswne)/sqrt2;
			count++;
		}
		if(Znwse!=IOUtils::nodata) {
			sum += 0.5*(A[2][2]-Znwse)/sqrt2;
			count++;
		}

Mathias Bavay's avatar
Mathias Bavay committed
913
		if(count != 0.) return 1./(double)count * sum;
914
915
916
917
918
919
920
921
922
923
924
925
	}
	curvature_failures++;
	return IOUtils::nodata;
}

double DEMObject::steepestGradient(double A[4][4]) {
//best effort to calculate the local steepest gradient
	double smax=-1.;		//maximum slope of all neighboring slopes
	const double sqrt2=sqrt(2.);	//the weight of the 4 corner cells is increased by sqrt(2)

	if(A[2][2]!=IOUtils::nodata) {
		if(A[1][1]!=IOUtils::nodata)
926
			smax = max( smax, fabs(A[2][2] - A[1][1])/(cellsize*sqrt2) );
927
		if(A[1][2]!=IOUtils::nodata)
928
			smax = max( smax, fabs(A[2][2] - A[1][2])/(cellsize) );
929
		if(A[1][3]!=IOUtils::nodata)
930
			smax = max( smax, fabs(A[2][2] - A[1][3])/(cellsize*sqrt2) );
931
		if(A[2][1]!=IOUtils::nodata)
932
			smax = max( smax, fabs(A[2][2] - A[2][1])/(cellsize) );
933
		if(A[2][3]!=IOUtils::nodata)
934
			smax = max( smax, fabs(A[2][2] - A[2][3])/(cellsize) );
935
		if(A[3][1]!=IOUtils::nodata)
936
			smax = max( smax, fabs(A[2][2] - A[3][1])/(cellsize*sqrt2) );
937
		if(A[3][2]!=IOUtils::nodata)
938
			smax = max( smax, fabs(A[2][2] - A[3][2])/(cellsize) );
939
		if(A[3][3]!=IOUtils::nodata)
940
			smax = max( smax, fabs(A[2][2] - A[3][3])/(cellsize*sqrt2) );
941
942
943
944
945
946
947
948
949
950
	}

	if(smax<0.)
		return IOUtils::nodata;
	return smax;
}

double DEMObject::lineGradient(const double& A1, const double& A2, const double& A3) {
//best effort to calculate the local gradient
	if(A3!=IOUtils::nodata && A1!=IOUtils::nodata) {
951
		return A3 - A1;
952
953
	} else {
		if(A2!=IOUtils::nodata) {
954
			if(A3!=IOUtils::nodata)
955
				return (A3 - A2)*2.;
956
			if(A1!=IOUtils::nodata)
957
				return (A2 - A1)*2.;
958
959
960
		}
	}

961
	return IOUtils::nodata;
962
963
964
965
966
}

double DEMObject::fillMissingGradient(const double& delta1, const double& delta2) {
//If a gradient could not be computed, try to fill it with some neighboring value
	if(delta1!=IOUtils::nodata && delta2!=IOUtils::nodata) {
967
		return 0.5*(delta1+delta2);
968
	} else {
969
970
		if(delta1!=IOUtils::nodata) return delta1;
		if(delta2!=IOUtils::nodata) return delta2;
971
972
	}

973
	return IOUtils::nodata;
974
975
976
977
}

void DEMObject::surfaceGradient(double& dx_sum, double& dy_sum, double A[4][4]) {
//Compute the gradient for a given cell (i,j) accross its eight surrounding cells (Horn, 1981)
978
979
980
	double dx1 = lineGradient(A[3][1], A[3][2], A[3][3]);
	double dx2 = lineGradient(A[2][1], A[2][2], A[2][3]);
	double dx3 = lineGradient(A[1][1], A[1][2], A[1][3]);
981

982
983
984
	double dy1 = lineGradient(A[3][1], A[2][1], A[1][1]);
	double dy2 = lineGradient(A[3][2], A[2][2], A[1][2]);
	double dy3 = lineGradient(A[3][3], A[2][3], A[1][3]);
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

	//now trying to fill whatever could not be filled...
	if(dx1==IOUtils::nodata) dx1 = fillMissingGradient(dx2, dx3);
	if(dx2==IOUtils::nodata) dx2 = fillMissingGradient(dx1, dx3);
	if(dx3==IOUtils::nodata) dx3 = fillMissingGradient(dx1, dx2);
	if(dy1==IOUtils::nodata) dy1 = fillMissingGradient(dy2, dy3);
	if(dy2==IOUtils::nodata) dy2 = fillMissingGradient(dy1, dy3);
	if(dy3==IOUtils::nodata) dy3 = fillMissingGradient(dy1, dy2);

	if(dx1!=IOUtils::nodata && dy1!=IOUtils::nodata) {
		// principal axis twice to emphasize height difference in that direction
		dx_sum = (dx1 + 2.*dx2 + dx3) * 0.25;
		dy_sum = (dy1 + 2.*dy2 + dy3) * 0.25;
	} else {
		//if dx1==nodata, this also means that dx2==nodata and dx3==nodata
		//(otherwise, dx1 would have received a copy of either dx2 or dx3)